Группы простых белков

Группы простых белков

§ 10. КЛАССИФИКАЦИЯ БЕЛКОВ

Существуют несколько подходов к классификации белков: по форме белковой молекулы, по составу белка, по функциям. Рассмотрим их.

Классификация по форме белковых молекул

По форме белковых молекул различают фибриллярные белки и глобулярные белки.

Фибриллярные белки представляют собой длинные нитевидные молекулы, полипептидные цепи которых вытянуты вдоль одной оси и скреплены друг с другом поперечными сшивками (рис. 18,б). Эти белки отличаются высокой механической прочностью, нерастворимы в воде. Они выполняют главным образом структурные функции: входят в состав сухожилий и связок (коллаген, эластин), образуют волокна шелка и паутины (фиброин), волосы, ногти, перья (кератин).

В глобулярных белках одна или несколько полипептидных цепей свернуты в плотную компактную структуру – клубок (рис. 18,а). Эти белки, как правило, хорошо растворимы в воде. Их функции многообразны. Благодаря им осуществляются многие биологические процессы, о чем подробнее будет изложено ниже.

Рис. 18. Форма белковых молекул:

а – глобулярный белок, б – фибриллярный белок

Классификация по составу белковой молекулы

Белки по составу можно разделить на две группы: простые и сложные белки. Простые белки состоят только из аминокислотных остатков и не содержат других химических составляющих. Сложные белки, помимо полипептидных цепей, содержат другие химические компоненты.

К простым белкам относятся РНКаза и многие другие ферменты. Фибриллярные белки коллаген, кератин, эластин по своему составу являются простыми. Запасные белки растений, содержащиеся в семенах злаков, – глютелины, и гистоны – белки, формирующие структуру хроматина, принадлежат также к простым белкам.

Среди сложных белков различают металлопротеины, хромопротеины, фосфопротеины, гликопротеины, липопротеины и др. Рассмотрим эти группы белков подробнее.

Металлопротеины

К металлопротеинам относят белки, в составе которых имеются ионы металлов. В их молекулах встречаются такие металлы, как медь, железо, цинк, молибден, марганец и др. Некоторые ферменты по своей природе являются металлопротеинами.

Хромопротеины

В составе хромопротеинов в качестве простетической группы присутствуют окрашенные соединения. Типичными хромопротеинами являются зрительный белок родопсин, принимающий участие в процессе восприятие света, и белок крови гемоглобин (Hb), четвертичная структура которого рассмотрена в предыдущем параграфе. В состав гемоглобина входит гем, представляющий собой плоскую молекулу, в центре которой расположен ион Fe 2+ (рис. 19). При взаимодействии гемоглобина с кислородом образуется оксигемоглобин. В альвеолах легких гемоглобин насыщается кислородом. В тканях, где содержание кислорода незначительно, оксигемоглобин распадается с выделением кислорода, который используется клетками:

.

Гемоглобин может образовывать соединение с оксидом углерода (II), которое называется карбоксигемоглобином:

.

Карбоксигемоглобин не способен присоединять кислород. Вот почему происходит отравление угарным газом.

Гемоглобин и другие гем-содержащие белки (миоглобин, цитохромы) называют еще гемопротеинами из-за наличия в их составе гема (рис. 19).

Фосфопротеины

Фосфопротеины в своем составе содержат остатки фосфорной кислоты, связанные с гидроксильной группой аминокислотных остатков сложноэфирной связью (рис. 20).

Рис. 20. Фосфопротеин

К фосфопротеинам относится белок молока казеин. В его состав входят не только остатки фосфорной кислоты, но и ионы кальция. Фосфор и кальций необходимы растущему организму в больших количествах, в частности, для формирования скелета. Кроме казеина, в клетках много и других фосфопротеинов. Фосфопротеины могут подвергаться дефосфорилированию, т.е. терять фосфатную группу:

фосфопротеин + Н2 протеин + Н3РО4

Дефосфорилированные белки могут при определенных условиях быть снова фосфорилированы. От наличия фосфатной группы в их молекуле зависит их биологическая активность. Одни белки проявляют свою биологическую функцию в фосфорилированном виде, другие – в дефосфорилированном. Посредством фосфорилирования – дефосфорилирования регулируются многие биологические процессы.

Липопротеины

К липопротеинам относятся белки, содержащие ковалентно связанные липиды. Эти белки встречаются в составе клеточных мембран. Липидный (гидрофобный) компонент удерживает белок в мембране (рис. 21).

Рис. 21. Липопротеины в клеточной мембране

К липопротеинам относят также белки крови, участвующие в транспорте липидов и не образующие с ними ковалентную связь.

Гликопротеины

Гликопротеины содержат в качестве простетической группы ковалентно связанный углеводный компонент. Гликопротеины разделяют на истинные гликопротеины и протеогликаны. Углеводные группировки истинных гликопротеинов содержат обычно до 15 – 20 моносахаридных компонентов, у протеогликанов они построены из очень большого числа моносахаридных остатков (рис. 22).

Рис. 22. Гликопротеины

Гликопротеины широко распространены в природе. Они встречаются в секретах (слюне и т.д.), в составе клеточных мембран, клеточных стенок, межклеточного вещества, соединительной ткани и т.д. Многие ферменты и транспортные белки являются гликопротеинами.

Классификация по функциям

По выполняемым функциям белки можно разделить на структурные, питательные и запасные белки, сократительные, транспортные, каталитические, защитные, рецепторные, регуляторные и др.

Структурные белки

К структурным белкам относятся коллаген, эластин, кератин, фиброин. Белки принимают участие в формировании клеточных мембран, в частности, могут образовывать в них каналы или выполнять другие функции ( рис. 23).

Рис. 23. Клеточная мембрана.

Питательные и запасные белки

Питательным белком является казеин, основная функция которого заключается в обеспечении растущего организма аминокислотами, фосфором и кальцием. К запасным белкам относятся яичный белок, белки семян растений. Эти белки потребляются во время развития зародышей. В организме человека и животных белки в запас не откладываются, они должны систематически поступать с пищей, в противном случае может развиться дистрофия.

Сократительные белки

Сократительные белки обеспечивают работу мышц, движение жгутиков и ресничек у простейших, изменение формы клеток, перемещение органелл внутри клетки. Такими белками являются миозин и актин. Эти белки присутствуют не только в мышечных клетках, их можно обнаружить в клетках практически любой ткани животных.

Транспортные белки

Гемоглобин, рассмотренный в начале параграфа, является классическим примером транспортного белка. В крови присутствуют и другие белки, обеспечивающие транспорт липидов, гормонов и иных веществ. В клеточных мембранах находятся белки, способные переносить через мембрану глюкозу, аминокислоты, ионы и некоторые другие вещества. На рис. 24 схематически показана работа переносчика глюкозы.

Рис. 24. Транспорт глюкозы через клеточную мембрану

Белки-ферменты

Каталитические белки, или ферменты, представляют собой самую многообразную группу белков. Почти все химические реакции, протекающие в организме, протекают при участии ферментов. К настоящему времени открыто несколько тысяч ферментов. Более подробно они будут рассмотрены в следующих параграфах.

Защитные белки

К этой группе относятся белки, защищающие организм от вторжения других организмов или предохраняющие его от повреждений. Иммуноглобулины, или антитела, способны распознавать проникшие в организм бактерии, вирусы или чужеродные белки, связываться с ними и способствовать их обезвреживанию.

Другие компоненты крови, тромбин и фибриноген, играют важную роль в процессе свертывания крови. Они предохраняют организм от потери крови при повреждении сосудов. Под действием тромбина от молекул фибриногена отщепляются фрагменты полипептидной цепи, в результате этого образуется фибрин:

фибриноген фибрин.

Образовавшиеся молекулы фибрина агрегируют, формируя длинные нерастворимые цепи. Сгусток крови вначале является рыхлым, затем он стабилизируется за счет межцепочечных сшивок. Всего в процессе свертывания крови участвует около 20 белков. Нарушения в структуре их генов является причиной такого заболевания, как гемофилия – сниженная свертываемость крови.

Рецепторные белки

Клеточная мембрана является препятствием для многих молекул, в том числе и для молекул, предназначенных для передачи сигнала внутрь клеток. Тем не менее клетка способна получать сигналы извне благодаря наличию на ее поверхности специальных рецепторов, многие из которых являются белками. Сигнальная молекула, например, гормон, взаимодействуя с рецептором, образует гормон-рецепторный комплекс, сигнал от которого передается далее, как правило, на белковый посредник. Последний запускает серию химических реакций, результатом которых является биологический ответ клетки на воздействие внешнего сигнала (рис. 25).

Рис.25. Передача внешних сигналов в клетку

Регуляторные белки

Белки, участвующие в управлении биологическими процессами, относят к регуляторным белкам. К ним принадлежат некоторые гормоны. Инсулин и глюкагон регулируют уровень глюкозы в крови. Гормон роста, определяющий размеры тела, и паратиреоидный гормон, регулирующий обмен фосфатов и ионов кальция, являются регуляторными белками. К этому классу белков принадлежат и другие протеины, участвующие в регуляции обмена веществ.

Интересно знать! В плазме некоторых антарктических рыб содержатся белки со свойствами антифриза, предохраняющие рыб от замерзания, а у ряда насекомых в местах прикрепления крыльев находится белок резилин, обладающий почти идеальной эластичностью. В одном из африканских растений синтезируется белок монеллин с очень сладким вкусом.

Характеристика простых белков.

Классификация белков по строению.

По структурным признакам все белки делятся на две большие группы: простые белки (протеины) и сложные белки (протеиды);

· Простые беки (протеины). Структура их представлена только полипептидной цепью, т.е. они состоят только из аминокислот и делятся на несколько подгрупп. В подгруппы объединяются белки близкие по молекулярной массе, аминокислотному составу, свойствам и функциям. В чистом виде простые белки встречаются редко. Как правило, они входят в состав сложных белков.

· Сложные белки (протеиды) состоят из белкового компонента, представленного каким-либо простым белком, и небелкового компонента, называемого простетической частью. В зависимости от химической природы простетической части сложные белки делятся на подгруппы.

Белки

Характеристика простых белков.

Протамины и гистоныимеют наименьшую молекулярную массу, в их составе преобладают диаминокарбоновые АК: аргинин и лизин (20-30%), поэтому обладают резко выраженными основными свойствами (ИЭТ – 9,5-12,0), имеют положительный заряд. Входят в состав сложных белков нуклеопротеинов. В составе нуклеопротеинов выполняют функции: – структурную (участвуют в формировании третичной структуры ДНК) и регуляторную (способны блокировать передачу генетической информации с ДНК на РНК).

Альбумины– белки небольшой молекулярной массы (15000-70000), кислые (ИЭТ 4,7), так как содержат большое количество глутаминовой и аспарагиновой кислот, имеют отрицательный заряд. Высаливаются насыщенным раствором сульфата аммония. Функции альбуминов: транспортная – переносят свободные жирные кислоты, холестерин, гормоны, лекарственные вещества, желчные пигменты, т.е. являются неспецифическими переносчиками.

За счет высокой гидрофильности альбумины поддерживают онкотическое давлениекрови,

участвуют в поддержании кислотно-основного состояния (КОС)крови.

Глобулины– белки с большей, чем у альбуминов, молекулярной массой (>100000), слабокислые или нейтральные белки (ИЭТ 6-7,3), так как содержат меньше, чем альбумины, кислых аминокислот. Осаждаются полунасыщенным (50%) раствором сульфата аммония. Входят в состав сложных белков – гликопротеинов и липопротеинов и в их составе выполняют функции: транспортную, защитную (иммуноглобулины), каталитическую, рецепторную и др..

Проламины и глютелины – растительные белки, содержатся в клейковине семян злаковых растений, нерастворимы в воде, растворах солей, кислотах и щелочах, но в отличие от всех других белков, растворяются в 60-80% растворе этанола. Содержат 20-25% глутаминовой кислоты, 10-15% пролина.

Протеиноидыфибриллярные белки, имеющие волокнистую структуру, нерастворимые в воде. В их составе преобладают АК: глицин (1/3), пролин и гидроксипролин (1/4) Функция – структурная, это белки опорных тканей (костей, хрящей, связок, сухожилий, ногтей, волос). Например, кератины – белки волос, рогов, кожи; коллагены – белки соединительной ткани; эластин – белок связок, сухожилий.

Дата добавления: 2016-05-25 ; просмотров: 1197 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

1.5. Классификация белков

В организме человека содержится свыше 50 000 индивидуальных белков, отличающихся первичной структурой, конформацией, строением активного центра и функциями. Однако до настоящего времени нет единой и стройной классификации, учитывающей различные особенности белков. В основе имеющихся классификаций лежат разные признаки. Так белки можно классифицировать:

 по форме белковых молекул (глобулярные – округлые или фибриллярные – нитевидные)

 по молекулярной массе (низкомолекулярные, высокомолекулярные)

 по выполняемым функциям (транспортные, структурные, защитные, регуляторные и др.)

 по локализации в клетке (ядерные, цитоплазматические, лизосомальные и др.)

 по структурным признакам и химическому составу белки делятся на две группы: простые и сложные. Простые белки представлены только полипептидной цепью, состоящей из аминокислот. Сложные белки имеют в своем составе белковую часть и небелковый компонент (простетическую группу). Однако и эта классификация не является идеальной, поскольку в чистом виде простые белки встречаются в организме редко.

Характеристика простых белков.

К простым белкам относят гистоны, протамины, альбумины и глобулины, проламины и глютелины, протеиноиды.

Гистоны – тканевые белки многочисленных организмов, связаны с ДНК хроматина. Это белки небольшой молекулярной массы (11-24 тыс.Да). По электрохимическим свойствам относятся к белкам с резко выраженными основными свойствами (поликатионные белки), ИЭТ у гистонов колеблется от 9 до 12. Гистоны имеют только третичную структуру, сосредоточены в основном в ядрах клеток. Гистоны связаны с ДНК в составе дезоксирибонуклеопротеинов. Связь гистон-ДНК электростатическая, так как гистоны имеют большой положительный заряд, а цепь ДНК-отрицательный. В составе гистонов преобладают диаминомонокарбоновые аминокислоты аргинин, лизин.

Выделяют 5 типов гистонов. Деление основано на ряде признаков, главным из которых является соотношение лизина и аргинина во фракциях, четыре гистона Н2А, Н2В, Н3 и Н4 образуют октамерный белковый комплекс, который называют «нуклеосомный кор». Молекула ДНК «накручивается» на поверхность гистонового октамера, совершая 1,75 оборота (около 146 пар нуклеотидов). Такой комплекс гистоновых белков с ДНК служит основной структурной единицей хроматина, ее называют «нуклеосома».

Основная функция гистонов – структурная и регуляторная. Структурная функция состоит в том, что гистоны участвуют в стабилизации пространственной структуры ДНК, а следовательно, хроматина и хромосом. Регуляторная функция заключается в способности блокировать передачу генетической информации от ДНК к РНК.

Протамины – своеобразные биологические заменители гистонов, но отличаются от них составом и структурой. Это самые низкомолекулярные белки (М – 4-12 тыс. Да), обладают резко выраженными основными свойствам из-за большого содержания в них аргинина (80%).

Как и гистоны, протамины – поликатионные белки. Они связываются с ДНК в хроматине спермиев и находятся в молоках рыб.

Сальмин – протамин из молоки лосося.

Скумбрин – из молоки скумбрии.

Протамины делают компактной ДНК сперматозоидов, т.е. выполняют как и гистоны, структурную функцию, однако не выполняют регуляторную.

Альбумины и глобулины.

Альбумины (А) и глобулины (Г).

А и Г белки, которые есть во всех тканях. Сыворотка крови наиболее богата этими белками. Содержание альбуминов в ней составляет 40-45 г/л, глобулинов 20-30 г/л, т.е на долю альбуминов приходится более половины белков плазмы крови.

Альбумины-белки относительно небольшой молекулярной массы (15-70 тыс. Да); они имеют отрицательный заряд и кислые свойства, ИЭТ – 4,7, содержат много глутаминовой аминокислоты. Это сильно гидратированые белки, поэтому они осаждаются только при большой концентрации водоотнимающих веществ.

Благодаря высокой гидрофильности, небольшим размерам молекул, значительной концентрации альбумины играют важную роль в поддержании осмотического давления крови. Если концентрация альбуминов ниже 30 г/л, изменяется осмотическое давление крови, что приводит к возникновению отеков. Около 75-80 % осмотического давления крови приходится на долю альбуминов.

Характерным свойством альбуминов является их высокая адсорбционная способность. Они адсорбируют полярные и неполярные молекулы, выполняя транспортную роль. Это неспецифические переносчики они транспортируют гормоны, холестерол, билирубин, лекарственные вещества, ионы кальция. Связывание и перенос длинноцепочных жирных кислот – основная физиологическая функция сывороточных альбуминов. Альбумины синтезируются преимущественно в печени и быстро обновляются, период их полураспада 7 дней.

Глобулины – белки с большей, чем альбумины молекулярной массой. Глобулины слабокислые или нейтральные белки ( ИЭТ = 6 – 7,3 ). Некоторые из глобулинов обладают способностью к специфическому связыванию веществ (специфические переносчики).

Возможно фракционирование белков сыворотки крови на альбумины и глобулины методом высаливания с помощью (NH4)2SO4. В насыщенном растворе осаждаются альбумины как более легкая фракция, в полунасыщенном – глобулины.

В клинике широкое распространение получил метод фракционирования белков сыворотки крови путем электрофореза. При электрофоретическом разделении белков сыворотки крови можно выделить 5–7 фракций: Характер и степень изменения белковых фракций сыворотки крови при различных патологических состояниях представляет большой интерес для диагностических целей. Уменьшение альбуминов наблюдается в результате нарушения их синтеза, при дефиците пластического материала, нарушении синтетической функции печени, поражении почек. Содержание глобулинов увеличивается при хронических инфекционных процессах.

Электрофорез белков сыворотки крови.

Проламины и глютелины.

Это группа растительных белков, которые содержатся исключительно в клейковине семян злаковых растений, где выполняют роль запасных белков. Характерной особенностью проламинов является то, что они не растворимы в воде, солевых растворах, щелочах, но растворимы в 70% растворе этанола, в то время как все другие белки выпадают в осадок. Наиболее изучены белки глиадин (пшеница) и зеин (кукуруза). Установлено, что проламины содержат 20-25% глутаминовой кислоты и 10-15 % пролина. Эти белки, например, глиадин, в норме у человека расщепляются, но иногда при рождении фермент, расщепляющий этот белок, отсутствует. Тогда этот белок превращается в продукты распада, обладающие токсическим действием. Развивается заболевание целиакия – непереносимость растительных белков.

Глютелины – тоже растительные белки, не растворимые в воде, в растворах солей, этаноле. Они растворимы в слабых щелочах.

Белки опорных тканей ( костей, хрящей, сухожилий, связок ), кератины – белки волос, рогов, копыт, коллагены – белки соединительной ткани, эластин – белок эластических волокон.

Все эти белки относятся к фибриллярным, не гидролизуются в желудочно – кишечном тракте. Коллаген составляет 25-33 % от общего количества белка организма взрослого человека или 6 % от массы тела. Пептидная цепь коллагена содержит около 1000 аминокислотных остатков, из которых каждая 3-я аминокислота – глицин, 20% составляют пролин и гидроксипролин, 10% аланин. При формировании вторичной и третичной структур этот белок не может давать типичных a-спиралей, поскольку аминокислоты пролин и оксипролин могут давать только одну водородную связь. Поэтому полипептидная цепь на участке, где находятся эти аминокислоты, легко изгибается, так как не удерживается, как обычно, второй водородной связью.

Эластин – это основной структурный компонент эластических волокон, которые содержатся в тканях обладающих значительной эластичностью (кровеносные сосуды, связки, легкие). Свойства эластичности проявляются высокой растяжимостью этих тканей и быстрым восстановлением исходной формы и размера после снятия нагрузки. В составе эластина содержится много гидрофобных аминокислот (глицина, валина, аланина, лейцина, пролина).

Сложные белки кроме полипептидных цепей содержат в своем составе небелковую (простетическую) часть, представленную различными веществами. В зависимости от химической природы небелковой части выделяют следующие группы сложных белков:

углевод – белковые комплексы

Мои таблетки

Простой белок [1] – это белок, построенный исключительно из остатков ^5,-аминокислот (при гидролизе распадающийся исключительно на аминокислоты [2] ), не требующий для функционирования наличия небелковых простетических групп.

Простые белки, по растворимости в солевых растворах и воде, условно подразделяются на несколько групп:

По пространственному строению и растворимости, простые белки подразделяются на глобулярные и фибриллярные:

  • глобулярные простые белки отличаются шарообразной формой молекулы (эллипсоид вращения), хорошо растворяются как в воде, так и в разбавленных солевых растворах. Хорошая растворимость глобулярных белков объясняется локализацией на поверхности глобулы заряженных аминокислотных остатков, окруженных гидратной оболочкой, благодаря чему обеспечивается тесный контакт с растворителем. К глобулярной группе также относятся все ферменты [3] и подавляющее большинство иных биологически активных белков, исключая структурные,
  • фибриллярные простые белки характеризуются волокнистой структурой, практически не растворимы как в воде, так и в солевых растворах. Полипептидные цепи [4] в молекулах фибриллярных белков располагаются параллельно одна другой. Данные простые белки принимают участие в образовании структурных элементов соединительной ткани: в эластинах, кератинах, коллагенах.

Белки альбумины и глобулины

Глобулярные простые белки альбумины и глобулины наиболее распространены в растительном и в животном мире, и, как правило, встречаются совместно, составляя основу протоплазмы ( цитоплазмы [5] и ядра клетки [6] ).

Наибольшее количество альбуминов и глобулинов содержится в плазме крови [7] , тканях организма, сыворотке молока. Альбумины и глобулины в здоровом организме всегда находятся в определенных пропорциях (альбумин – глобулиновый коэффициент [8] ).

Альбумины отличаются от глобулинов, как физико-химическими свойствами, так и химическим составом. В частности, альбумины, в отличие от глобулинов, содержат существенно меньшее количество глицина [9] и большее количество серосодержащих аминокислот.

Характерной особенностью белка альбумина является меньшая молекулярная масса в сравнении с глобулинами: молекулярная масса альбумина плазмы крови равна 68000, глобулина – 180000.

Белки глобулины – менее дисперсные и менее гидрофильные (скорее более гидрофобные), чем альбумины, поэтому коллоидные растворы глобулинов не настолько устойчивы, как растворы альбуминов.

Альбумины растворимы в воде в широком диапазоне pH (от 4 pH до 8,5 pH), выпадают в осадок при 70-100% концентрации раствора сульфатом аммония (глобулины – при 50% концентрации). Глобулины сложнее растворяются в воде, при этом растворимы в солевых растворах, обычно содержат углеводную часть.

Белки гистоны и протамины

Глобулярные простые белки гистоны и протамины являются наиболее простыми белками, характерной особенностью которых является слабощелочные свойства растворов. Данный факт обусловлен наличием в составе гистонов и протаминов значительного количества диаминокарбоновых кислот – аргинина [10] , лизина [11] и гистидина [12] .

Гистоны – низкомолекулярные белки с высоким содержанием в молекуле остатков лизина и аргинина, что обусловливает их основные свойства, содержат 20-35% основных аминокислот, (белки протамины – 50-80%, в связи с чем, протамины проявляют более щелочные свойства, нежели гистоны).

Характерным признаком протаминов является то, они имеют большую молекулярную массу, в сравнении с другими простыми белками. Протамины отличаются еще более высоким содержанием аргинина (до 85 %), и, как и гистоны, образуют устойчивые ассоциаты [13] с нуклеиновыми кислотами [14] , выступая в качестве репрессорных и регуляторных белков – составной части нуклеопротеинов.

Гистоны и протамины в значительных количествах содержатся в зобной железе, в икре и сперме рыб, в селезенке. Названия представителей этих простых белков происходят от источника их получения: протамины, выделенные из скумбрии, так и называются – скумбрии, из молоки сельди – клупеином, из молок семги – сальмии.

Гистоны и протамины входят в состав сложных белков в частности нуклеопротеиновых ядер.

Белки глютелины и проламины

Глобулярные простые белки глютелины и проламины – белки растительного происхождения, характеризующиеся высоким содержанием аминокислот пролина и глутаминовой кислоты.

Глютелины на 45 % состоят из глутаминовой кислоты, растворяются в разбавленных кислотах и щелочах, тогда как в воде и разбавленных солевых растворах не растворяются.

Представителями данного класса простых белков является оризенин (белок риса) и глютелин (белок кукурузы).

Глютелины отличаются от проламинов более высоким содержанием гликокола, аргинина, гистидина. По аминокислотному составу белки глютелины сбалансированы лучше, чем белки проламинов.

Проламины, как и глютелины, не растворяются в воде, однако хорошо растворяются в 50-90 % этиловом спирте, состоят на 30-45 % из глутаминовой кислоты и на 15% из пролина.

К проламинам принадлежат глиадин (белок ржи и пшеницы), гордеин (белок ячменя), зеин (белок кукурузы).

Глютелины и проламины составляют подавляющую массу белков зерновых культур.

Белки протеиноиды (склеропротеины)

Фибриллярные простые белки протеиноиды (склеропротеины) – это белки мышечных тканей, кожных покровов, костей, хрящей, волос. Характерной особенностью данных белков является высокая устойчивость к различным растворителям: они не растворяются в воде, растворах нейтральных солей, разбавленных кислотах и щелочах. На протеиноиды не оказывают влияние ферменты, поэтому при попадании в организм с пищей, данные белки крайне плохо усваиваются.

Представителями протеиноидов (склеропротеинов) является эластин, коллаген [15] , кератины, фиброин.

Примечания

Примечания и пояснения к статье «Простые белки».

  • [1]Белок, протеин – высокомолекулярное органическое вещество, состоящее из альфа-аминокислот, объединенных пептидными связями. Существуют две класса белков: простой белок, при гидролизе распадающийся исключительно на аминокислоты, и сложный белок (протеид, холопротеин, голопротеин), содержащий простетическую группу (кофактор), при гидролизе сложного белка, кроме аминокислот, освобождается небелковая часть либо продукты ее распада. Белки-ферменты ускоряют (катализируют) биохимические реакции, оказывая существенное влияние на процессы обмена веществ. Отдельные белки выполняют механические или структурные функции, образуя цитоскелет, сохраняющий форму клеток. Помимо прочего, белки играют ключевую роль в сигнальных системах клеток, при иммунном ответе и в клеточном цикле. Белки являются основой для создания мышечной ткани, клеток, тканей и органов у человека.
  • [2]Аминокислота – органическое соединение, являющееся строительным материалом для белковых структур, мышечных волокон. Организм использует аминокислоты для собственного роста, укрепления и восстановления, для выработки различных гормонов, ферментов и антител.
  • [3]Ферменты, энзимы – как правило, белковые молекулы или рибозимы (молекулы РНК) либо их комплексы, катализирующие (ускоряющие) химические реакции в живых системах. Ферментативная активность может регулироваться ингибиторами и активаторами (ингибиторы – понижают, активаторы – повышают). По типу катализируемых реакций ферменты подразделяются на шесть классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы.
  • [4]Пептидная связь образуется при реакции аминогруппы одной аминокислоты и карбоксильной группы другой аминокислоты с выделением молекулы воды. Связанные пептидной связью аминокислоты образуют полипептидную цепь.
  • [5]Цитоплазма (от греческих _4,a3,`4,_9,`2, – «клетка» и `0,_5,^0,`3,_6,^5, «содержимое») – полужидкое содержимое клетки, внутренняя среда умершей или живой клетки, кроме ядра и вакуоли, ограниченная плазматической мембраной.
  • [6]Ядро клетки, клеточное ядро – один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), осуществляющий основные функции: хранение, передачу и реализацию наследственной информации с обеспечением синтеза белка.
  • [7]Плазма крови – жидкая часть крови, состоящая на 90-94% из воды и на 7-10% из органических и неорганических веществ. В плазме крови во взвешенном состоянии находятся форменные элементы (клетки крови).
  • [8]Альбумин – глобулиновый коэффициент – соотношение альбуминов и глобулинов крови, величина в норме относительно постоянная (1,5—2,3). При определении альбумин – глобулинового коэффициента, как правило, используется метод высаливания, когда ставится ставка на различия в растворимости альбуминов и глобулинов, либо путем электрофореза сыворотки.
  • [9]Глицин, гликокол, аминоэтановая кислота, аминоуксусная кислота – простейшая алифатическая аминокислота, единственная протеиногенная аминокислота, не имеющая оптических изомеров. Глицин входит в состав многих белков и биологически активных соединений. Из глицина в живых клетках синтезируются пуриновые основания и порфирины.
  • [10]Аргинин – алифатическая основная ^5,-аминокислота. Аминокислота оптически активна, существует в виде L– и D– изомеров (L-аргинин входит в состав пептидов и белков). Аргинин является субстратом NO-синтаз в синтезе оксида азота NO, являющегося локальным тканевым гормоном с множественными эффектами – от противовоспалительного до сосудистых эффектов и стимуляции ангиогенеза.
  • [11]Лизин – алифатическая незаменимая аминокислота с выраженными свойствами основания, входящая в состав белков. Лизин необходим для роста и восстановления тканей, производства альбуминов, ферментов, гормонов, антител.
  • [12]Гистидин – гетероциклическая альфа-аминокислота, одна из 20 протеиногенных аминокислот. Гистидин входит в состав активных центров множества ферментов, является предшественником в биосинтезе гистамина.
  • [13]Любые соединения с водородными связями будут соединениями с ассоциатами.
  • [14]Нуклеиновая кислота – высокомолекулярное органическое соединение, образованное остатками нуклеотидов.
  • [15]Коллаген, collagen — фибриллярный белок, основной структурный белок межклеточного матрикса, составляющий от 25 до 33% общего количества белка в организме (

6% массы тела). Синтез коллагена протекает в фибробласте и ряд стадий вне фибробласта. Будучи основой соединительной ткани организма (кость, сухожилие, дерма, хрящ, кровеносные сосуды, зубы), коллаген обеспечивает ее эластичность и прочность.

Высокоспецифичным ферментом, расщепляющим пептидные связи в определенных участках спирализованных областей коллагена (с выделением свободной аминокислоты оксипролин, в частности) является коллагеназа. Образующиеся в результате разрушения коллагеновых волокон (под воздействием коллагеназы) аминокислоты участвуют в построении клеток и восстановлении коллагена.

Коллагеназа широко используется в медицинской практике для лечения ожогов в хирургии и для лечения гнойных заболеваний глаз в офтальмологии. В частности, коллагеназа входит в состав полимерных дренирующих сорбентов «Асептисорб» (Асептисорб-ДК) производства компании «Асептика», применяющихся при лечении гнойно-некротических ран.

При написании статьи о простых белках, в качестве источников использовались материалы информационных и справочных интернет-порталов, сайтов новостей NCBI.NLM.NIH.gov, ProteinStructures.com, MedicalNewsToday.com, Phys.MSU.ru, IBCh.ru, Википедия, а также следующие печатные издания:

  • Гауровиц Ф. «Химия и функции белков». Издательство «Мир», 1965 год, Москва,
  • Степанов В. М. «Молекулярная биология. Структура и функции белков. Классический университетский учебник». Издательство «Издательство Московского государственного университета», 2005 год, Москва,
  • Ченцов Ю. С. «Введение в клеточную биологию. Классический университетский учебник XXI века». Издательство «Академкнига», 2005 год, Москва,
  • Коничев А. С., Севастьянова Г. А. «Молекулярная биология. Высшее профессиональное образование». Издательство «Академия», 2008 год, Москва.

Жми и поделитесь статьей с друзьями:

Классификация белков

Белки — природные высокомолекулярные органические соединения, построенные из остатков 20 аминокислот, которые соединены пептидными связями в полипептидные цепи. В процессах жизнедеятельности всех организмов белки выполняют структурную, регуляторную, каталитическую, защитную, транспортную, энергетическую и другие функции. Белки — основа кожи, шерсти, шелка и других натуральных материалов, важнейшие компоненты пищи человека и корма животных. Названию белки, наиболее принятому в отечественной литературе, соответствует термин протеины (от греч. proteios — первый).

Классификация белков

Белки разделяются на протеины (простые белки), состоящие только из аминокислот и при гидролизе почти не образующие других продуктов, и протеиды (сложные белки), состоящие из собственно белковой части, построенной из α-аминокислот, и из соединенной с ней небелковой части, иначе называемой простетической группой. При гидролизе протеиды кроме α-аминокислот образуют и другие вещества, например, фосфорную кислоту, глюкозу, гетероциклические соединения и т. д.

1. Протеины разделяются на группы в зависимости от их растворимости и положения изоэлектрической точки:

1) Альбумины. Растворимы в воде, при нагревании свертываются. Осаждаются насыщенными растворами солей (не осаждаются насыщенным раствором хлорида натрия NaCl, но могут быть осаждены при насыщении раствора сульфатом аммония). Имеют сравнительно небольшую молекулярную массу. При гидролизе дают мало гликоколя. Входят в состав белка яйца, сыворотки крови, молока, а также ферментов и семян растений.

2) Глобулины. Нерастворимы в воде. Растворяются в разбавленных растворах солей и осаждаются концентрированными растворами солей. Свертываются при нагревании. Имеют большую молекулярную массу, чем альбумины. Входят в состав мышечных волокон (миозин), яйца, молока, крови, растительных семян (конопля, горох).

3) Проламины. Нерастворимы в воде. Растворяются в 60—80 %-ном спирте. Не свертываются при кипячении. Содержат много пролина. Входят в состав растительных белков (глиадин пшеницы, гордеин ячменя, зеин кукурузы).

4) Протамины. Сильные основания. Хорошо растворимы в воде, в разбавленных кислотах и щелочах. Не свёртываются при нагревании. Не содержат серы. Имеют простой аминокислотный состав (состоят преимущественно из диаминокислот) и низкую молекулярную массу. Входят в состав спермы и икры рыб, а также в состав сложных белков – нуклеопротеидов.

5) Гистоны. Менее сильные основания. Содержат значительное количество диаминокислот со свободными аминогруппами. Растворимы в воде и в разбавленных кислотах, но нерастворимы в разбавленных щелочах. Обычно представляют собой собственно белковые части сложных белков. В качестве примера можно назвать глобин – белок, входящий в состав сложного белка крови – гемоглобина.

6) Склеропротеины. Нерастворимы в воде, растворах солей, кислот и щелочей (они растворяются лишь при длительной обработке концентрированными кислотами и щелочами, причем с расщеплением молекул). Устойчивы к гидролизу. Характеризуются высоким содержанием серы. В животных организмах выполняют опорные и покровные функции; в растениях не встречаются. Представители: коллаген – белковое вещество костей, кожи, хрящей, соединительных тканей; эластин – белок стенок кровеносных сосудов, сухожилий; кератин — белок шерсти, волос, рогового вещества, ногтей, эпидермиса кожи; фиброин – белок шелка.

2. Протеиды разделяются на группы в зависимости от состава небелковой части:

1) Нуклеопротеиды. Гидролизуются на простой белок (чаще всего гистоны или протамины) и нуклеиновые кислоты. Последние в свою очередь гидролизуются с образованием углевода, фосфорной кислоты, гетероциклического основания. Растворимы в щелочах и нерастворимы в кислотах. Входят в состав протоплазмы, клеточных ядер, вирусов.

2) Фосфопротеиды. Гидролизуются на простой белок и фосфорную кислоту. Слабые кислоты. Свертываются не при нагревании, а от действия кислот. К ним относятся казеин коровьего молока и вителлин – белок, входящий в состав желтка куриного яйца.

3) Гликопротеиды. Гидролизуются на простой белок и углевод. Нерастворимы в воде. Растворяются в разбавленных щелочах. Нейтральны. Не свертываются при нагревании. Входят в состав слизей. Представитель: муцин, входящий в состав слюны.

4) Хромопротеиды. Распадаются при гидролизе на простой белок и красящее вещество. Примером является гемоглобин крови; при гидролизе он расщепляется, образуя белок глобин и красящее вещество гем красного цвета.

5) Липопротеиды. Это соединения белка с липидами. Содержатся в протоплазме клеток, в сыворотке крови, в яичном желтке.

Белки классифицируются также по форме их молекул:

1) фибриллярные (волокнистые) белки, молекулы которых имеют нитевидную форму; к ним относят фиброин шелка, кератин шерсти;

2) глобулярные белки, молекулы которых имеют округлую форму; к ним относятся, например, альбумины, глобулины и ряд других, в том числе и сложные белки.

Лекция № 3. Строение и функции белков. Ферменты

Строение белков

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной. В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов. На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков.

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин. Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Купить проверочные работы
по биологии

Аминокислотный состав, структура белковой молекулы определяют его свойства. Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией. Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой, в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией. Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой.

Функции белков

ФункцияПримеры и пояснения
СтроительнаяБелки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
ТранспортнаяБелок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
РегуляторнаяГормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
ЗащитнаяВ ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
ДвигательнаяСократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
СигнальнаяВ поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
ЗапасающаяВ организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
ЭнергетическаяПри распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
КаталитическаяОдна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО2 при фотосинтезе.

Ферменты

Ферменты, или энзимы, — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом.

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор. У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия.

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами, если тормозят — ингибиторами.

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С–С, С–N, С–О, С–S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С–С, С–N, С–О, С–S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

Перейти к лекции №2 «Строение и функции углеводов и липидов»

Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»

Смотреть оглавление (лекции №1-25)

Ссылка на основную публикацию