Факторы влияющие на подвижность сустава

Факторы, влияющие на подвижность суставов.

1. Конгруэнтность сустава – площадь соответствия (лимитирует подвижность)

2. Возрастные факторы (снижается с возрастом). В 14 лет самые высокие.

3. Пол. У женщин подвижность выше, чем у мужчин.

4.Чем выше температура, тем выше подвижность сустава.

5. Время суток (вечером более подвижны).

6. Разминка.

7. Массаж.

8. Вид нагрузки.

Факторы, определяющие стабильность сустава:

v Суставная капсула

v Натяжение суставных связок

v Тяга проходящих рядом мышц

v Атмосферное давление

v Прилипание одной суставной поверхности к другой за счет одинакового радиуса кривизны, клейной синовиальной жидкости, а также маленького расстояния между костями и возникающих при этом сил молекулярного притяжения

Факторы, определяющие стабильность сустава:

v Увеличение синовиальной жидкости ведет за собой улучшение качества хряща

v Улучшается качество связочного аппарата

v Увеличивается площадь суставной поверхности (т.к. кость начинает расти)

Позвоночник.

1. Амортизирующая(за счет изгибов)

2. Осевая

3. Защитная

4. Стержневая

Отделов позвоночника.

• Шейный (7 позвонков)

• Грудной (12 позвонков)

Поясничный (5 позвонков)

• Крестцовый (5 позвонков)

• Копчиковый (5 позвонков)

Копчиковый и крестцовый отделы окончательно срастаются к 14 годам.

С1 Атлант – переходный позвонок между позвоночником и мозгом

С2 Аксис осевой позвонок (эпистрофий). По строению схож с Атлантом, однако на его позвонковом кольце имеется зуб, к-ый соединяясь с суставным отростком Атланта формирует цилиндрический сустав

С3 имеет типовое строение.

Костей в позвоночнике – 26 Позвонков – 33-34

Совокупность позвоночных отверстий образует канал с распложенным в нем спинным мозгом.

Костей в позвоночнике – 26

Позвонков – 33-34

Между позвонками в позвоночнике располагаются межпозвоночные диски, к-ые выполняют амортизационную функцию.

Поясничный отдел имеет самые крупные позвонки и межпозвоночные диски, что делает его максимально подвижным.

У позвоночника трехосное вращение.

За стабилизацию позвонков в позвоночнике отвечают связки.

В ответ на физ. нагрузку происходит укрепление связочного и мышечного аппарата позвоночника.

Изгибы позвоночника:

• Шейный и поясничный – лордозы (вперед)

• Грудной и крестцовый – кифозы (назад)

Первый изгиб, который появляется у позвоночника – это шейный лордоз.

Изгибы позвоночника позволяют осуществлять акт прямо хождения (позвоночник служит пружинкой).

Тела позвонков от шейного отдела к поясничному увеличивается. В грудном отделе наблюдается соединение отростков позвонков и тонкие меж позвоночные диски, что ограничивает подвижность данного отдела.

В поясничном отделе межпозвоночные диски ярко выражены, отростки плотно не прилегают к друг другу.

У женщин растет позвоночник до 18 лет, у мужчин 22 года.

В межпозвоночном суставе, в диске располагается пульпозное ядро, которое позволяет за ночь восстановить изначальную длину позвоночника.

В позвоночнике в позвоночном канале располагается спинной мозг.

Травмы позвоночника:

Смещение позвонков.

Протрузия.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ – конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

ОСОБЕННОСТИ ВЛИЯНИЯ ВНЕШНИХ И ВНУТРЕННИХ ФАКТОРОВ НА ПОДВИЖНОСТЬ В СУСТАВАХ
статья на тему

В статье рассматриваются вопросы взаимосвязи гибкости мышц и подвижности. суставов,влияние этих качеств на здоровье современной молодёжи.

Скачать:

ВложениеРазмер
gibkost.docx16.27 КБ

Предварительный просмотр:

ОСОБЕННОСТИ ВЛИЯНИЯ ВНЕШНИХ И ВНУТРЕННИХ ФАКТОРОВ НА ПОДВИЖНОСТЬ В СУСТАВАХ

Сегодня особенно остро стоит вопрос о заболеваниях опорно-двигательного аппарата, а именно – это заболевания позвоночника и суставов конечностей. Данная проблема возникает из-за преждевременного износа и деформацией суставных хрящей. Чаще всего причинами тому служат малоактивный «сидячий» образ жизни или, наоборот, деятельность, которая связанна с большой физической нагрузкой, что перегружает суставы, позвоночник и закрепощает мышцы.

Подвижность в суставах и эластичность мышц имеют огромное значение для нормального функционирования самих суставов. Во-первых, суставы, окруженные негибкими мышцами, испытывают сильный стресс в повседневной жизни, что может привести к патологии в их работе.

Во-вторых, недостаточная гибкость отрицательно влияет на процесс смазывания хрящевых тканей, выстилающих сустав изнутри, а это нарушает нормальную работу суставов, что может привести к развитию артроза.

В-третьих, хорошая гибкость способна предотвратить травмы за счѐт увеличения длины мышц и улучшения работоспособности суставов.

Следовательно, на здоровье организма огромное значение оказывает то, насколько подвижны суставы, а так же насколько хорошую гибкость имеют мышцы. Поэтому, чрезвычайно важно уделять внимание развитию этих качеств, чтобы избежать ряда проблем, связанных со здоровьем, улучшить работу опорно-двигательной системы, которая в свою очередь оказывает сильное влияние и на другие системы организма.

С возрастом морфологическое строение суставов изменяется (уменьшение подвижности в сочленениях и эластичности связок), и это приводит к ограничению их подвижности [1]. Поэтому, в студенческом возрасте становится труднее развивать и поддерживать подвижность в суставах.

При достаточной гибкости еѐ необходимо поддерживать с помощью специальных упражнений. Если гибкость не достаточна, то следует уделять еѐ развитию в два раза больше внимания. Адаптационные возможности органов и систем организма к физическим нагрузкам у студентов развиты хорошо, восстановительные процессы происходит быстрей. Это позволяет увеличить количество тренировочных занятий [4]. Стоит отметить, что подвижность в суставах у девушек больше, чем у юношей, поэтому для достижения результата им достаточно выполнять упражнение с усилием 70-80% от стандартной нагрузки.

Рассмотрим, что представляет собой гибкость и подвижность в суставах, чем они обусловлены, разберѐм виды гибкости, механизмы и факторы, влияющие её развитие.

Гибкость – свойство опорно-двигательного аппарата, большая степень подвижности его звеньев относительно друг друга, что обуславливается амплитудой движения в суставе, которая, в свою очередь, зависит от строения сустава, суставной капсулы, связок, от силы и эластичности мышц и др..Гибкость дает возможность выполнять движения с большой амплитудой [2].

Различают два вида гибкости: общую и специальную.

Общая гибкость показывает, какова подвижность во всех суставах тела и позволяет выполнять разнообразные движения с оптимальной амплитудой. Специальная гибкость – предельная подвижность в отдельных суставах, определяющая эффективность спортивной или профессионально-прикладной деятельности.

Специальная гибкость развивается путѐм выполнения определѐнных упражнений на растягивание мышечно-связочного аппарата. Гибкость тела обусловлена совокупной подвижностью в сочленениях отдельных костей. Однако, к отдельным суставам термин «гибкость» не применяют. Вместо него используют термин «подвижность в суставах».

Подвижность в суставах — морфофункциональное двигательное качество. С одной стороны, она определяется строением сустава, эластичностью связок, с другой — эластичностью мышц, которая зависит от физиологических и психологических факторов [1]. Подвижность – свойство не универсальное: если один сустав отличается гибкостью, то остальные суставы такими гибкими могут и не быть. Хорошая подвижность достигается благодаря регулярным движениям в суставах, которые выполняются в полную амплитуду. Чем большее соответствие друг другу (конгруэнтность) имеют сочленяющиеся суставные поверхности, тем наименьшей подвижностью они обладают. Такие анатомические особенности суставов, как костные выступы, тоже могут ограничивать подвижность. Связочный аппарат также влияет на амплитуду движения сустава: например, чем более толстыми являются связки и суставная капсула, и чем больше натяжение суставной капсулы, тем сильнее ограничена подвижность сочленяющихся сегментов тела.

Стоит отметить несколько факторов, влияющих на гибкость и еѐ развитие: эмоциональное состояние (эмоционально возбуждение увеличивает эластичность мышц), время суток (наименьшая подвижность в суставах наблюдается до 8-9 часов утра, затем она возрастает, достигая пика в 12-14 часов дня, а к вечеру снова понижается.), температура окружающей среды (при 20-30°С гибкость выше, чем при 5-10°С), разминка ( в результате работы мышц увеличивается их температура, что повышает их эластичность. Мягкие ткани также могут стать препятствием для движения сустава в его полной амплитуде. Например, тугая кожа, растянутая чрезмерными жировыми отложениями, либо большими мышцами способна мешать нормальному движению сустава, закрепощая его.

Различают активную и пассивную подвижность в суставах. Активная подвижность проявляется при произвольных движениях человека, а пассивная – при силах, действующих на человека извне, при ней достигается большая амплитуда. Утомление также ограничивает амплитуду активных движений и растяжимость мышечно-связочного аппарата, но не препятствует проявлению пассивной гибкости [3]. Разность показателей активной и пассивной гибкости именуют «резервной растяжимостью», или «запасом гибкости». Подводя итог, следует отметить, что на гибкость тела оказывают влияние подвижность в суставах, эластичность мышц, сухожилий и связок, степень закрепощения движения со стороны мягких тканей. Так как, в свою очередь, сама подвижность в суставах главным образом зависит от эластичности тех же самых мышц, сухожилий и связок, а связки и сухожилия являются малорастяжимыми образованиями, обладающими высокой плотностью, и их чрезмерное растяжение негативно скажется на здоровье сустава, то таким образом, прежде всего, стоит обратить внимание именно на развитие гибкости мышц, т.е. на выполнение упражнений на их растягивание.

1. Ашмарин, Б.А. Теория и методика физического воспитания. Учебник для институтов физической культуры/ Б.А. Ашмарин. – М.: Просвещение, 1990. – 287 с.

2. Баршай, В.М. Гимнастика/ В.М. Баршай, В.Н. Курысь. – Ростов-н/Д: Феникс, 2011. – 336с.

3. Захаров, Е.Н. Энциклопедия физической подготовки / Захаров Е.Н., Карасев А.В., Сафонов А.А., под общей ред. А. В. Карасева. – М.: Лептос, 1994. – 368 с.

4. Коц, Я.М. Спортивная физиология. Учебник для институтов физической культуры/ Я.М. Лукаш. – М.: Физкультура и спорт, 1986. — 240 с.

Факторы влияющие на подвижность сустава

Сегодня мы предлагаем ознакомиться со статьей на тему: “факторы влияющие на подвижность сустава”. В статье представлена полная информация по тематике, рассмотренная с разных точек зрения.

ОГРАНИЧЕНИЯ ПОДВИЖНОСТИ (ГИБКОСТИ) СУСТАВА

Диапазон движения сустава и, следовательно, гибкость, ограничены пятью основными факторами:

1. Отсутствием эластичности соединительных тканей в мышцах или суставах.

2. Мышечным напряжением.

3. Отсутствием координации и силы в случае активного движения.

4. Ограничением костных и суставных структур.

Таблица 12.1. Теоретическая модель подходов и действий для увеличения амплитуды движений сустава

Нагрузка Изометрическое противоположных Концентрическое мышц Эксцентрическое Методы Последовательная индукция улучшения (улучшение проведения нервно-мышечной передачи импульсов)

Увеличение силы противоположных мышц

Сокращение участка-мишени во время растягивания Реципрокное ингибирование Аккомодация Тепло, лед, массаж, физические упражнения Силовая тренировка

Усвоение: рекрутирование, координация, синхронизация

Наука о гибкости

Чтобы увеличить амплитуду движения сустава, методы растягивания ^^лжии.’лбесийч.тахьултд-бы.огщо из следующих условий: увеличить растяжимость соединительных тканей в мышцах или суставах; снизить мышечное напряжение, чтобы обеспечить расслабление; увеличить координацию сегментов тела и силу агонистической мышечной группы (табл. 12.1).

Дата добавления: 2014-12-18 ; просмотров: 516 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Факторы, влияющие на проявление гибкости

Проявление гибкости зависит от ряда факторов и прежде всего от:

1) строения суставов;

2) эластичности мышц, связок, суставных сумок;

3) центрально-нервной регуляции тонуса мышц;

4) совершенства межмышечной координации (проявляется в маховых движениях – способности сочетать произвольное расслабление растягиваемых мышц с напряжением мышц, производящих движение);

5) психического состояния;

6) степени активности растягиваемых мышц;

9) температуры среды и тела;

10) суточной периодики;

11) возраста и пола;

12) уровня силовой подготовленности;

13) исходного положения тела и его частей;

14) ритма движения;

15) предварительного напряжения мышц.

Ограничение подвижности связано и со связочным аппаратом: чем толще связки и суставная капсула и чем больше натяжение суставной капсулы, тем больше ограничена подвижность сочленяющихся сегментов тела.

Подвижность в суставах может быть лимитирована напряжением мышц-антагонистов. Поэтому проявление гибкости зависит не только от эластических свойств мышц, связок, формы и особенностей сочленяющихся суставных поверхностей, но и от способности сочетать произвольное расслабление растягиваемых мышц с напряжением мышц, производящих движение, т. е. от совершенства межмышечной координации. Чем выше способность мышц-антагонистов к растягиванию, тем меньшее сопротивление они оказывают при выполнении движений и тем легче выполняются эти движения. Недостаточная подвижность в суставах, связанная с несогласованной работой мышц, вызывает закрепощение движений, резко замедляет их выполнение, затрудняет процесс освоения двигательных навыков. В ряде случаев узловые компоненты техники сложнокоординированных движений не могут быть выполнены из-за ограниченной подвижности работающих звеньев тела. Одним из факторов, влияющим на подвижность суставов, является также общее функциональное состояние организма: в данный момент под влиянием утомления активная гибкость уменьшается на 11,6 %, а пассивная увеличивается на 9,5 % [7].

Результаты немногих генетических исследований говорят о высоком или среднем влиянии генотипа на подвижность тазобедренных и плечевых суставов и гибкость позвоночного столба.

Л. П. Сергиенко и С. В. Алексеева провели исследования, чтобы выяснить, в какой мере на развитие гибкости влияют наследственные факторы, а в какой – среда, условия, в которых вырос и живет человек. Оказалось, что общая гибкость в суставах в значительной мере обусловлена наследственными факторами.

У каждого человека есть индивидуальный предел в развитии гибкости, обусловленный именно генотипом (здесь и строение суставов, и расположение связок, и состояние нервно-мышечной системы).

Заранее определить, насколько человек предрасположен к разви-тию гибкости, абсолютно точно невозможно. Однако многолетние исследования ученых показали, что сделать это можно с помощью отпечатков пальцев на руке (рис. 1). Исследования позволили установить следующую закономерность.

Рис. 1. Типы отпечатков пальцев

Как известно, рисунки на подушечках пальцев можно разделить на три основных типа: дуги (А), петли (Б) и круги (В). Петли, в свою очередь, делятся на два типа: те, которые открытым концом обращены в сторону большого пальца, называют радиальными (Р); если же открытый конец петли направлен в сторону мизинца, это ульнарные петли (У). Наиболее благоприятными для обладателей хорошей гибкости считаются такие сочетания отпечатков: У×В; В×У; В×А; А×В. Остальные варианты сочетаний чаще всего соответствуют плохой гибкости.

Помимо рассмотренных выше, существует целый ряд дополнительных факторов, которые могут влиять на уровень развития гибкости человека. К ним относятся возраст, пол, телосложение, латерализация, тренировка и суточная периодика. Данные о взаимосвязи между возрастом и уровнем гибкости и, особенно, о возможности увеличения или снижения его в период физического развития довольно противоречивы. Обычно подвижность крупных звеньев тела постепенно увеличивается до 13–14 лет и, как правило, стабилизируется к 16–17 годам, а затем имеет устойчивую тенденцию к снижению. Вместе с тем, если после 13–14-летнего возраста не выполнять упражнений на растягивание, то гибкость может начать снижаться уже в юношеском возрасте. И наоборот, практика показывает, что даже в возрасте 40–50 лет, после регулярных занятий с применением разнообразных средств и методов, гибкость повышается, а у некоторых людей достигает или даже превосходит тот уровень, который был у них в юные годы.

Результаты исследований показывают, что маленькие дети являются достаточно гибкими. В школьные годы уровень гибкости снижается вплоть до пубертатного периода, после чего он снова начинает возрастать. Также необходимо отметить, что к снижению подвижности в отдельных суставах у детей среднего школьного возраста может приводить нарушение осанки. После завершения периода полового созревания уровень гибкости стабилизируется, а затем начинает снижаться. Несмотря на то, что с возрастом уровень гибкости снижается, у физически активных и здоровых людей степень его снижения минимальна.

Установлено, что женщины обладают большей гибкостью, чем мужчины. Это обусловлено как анатомическими, так и физиологи-ческими факторами.

К снижению гибкости может привести и систематическое или концентрированное на отдельных этапах подготовки применение силовых упражнений, если при этом в тренировочные программы не включаются упражнения на растягивание.

Проявление гибкости в тот или иной момент времени зависит и от общего функционального состояния организма, и от внешних условий: времени суток, температуры мышц и окружающей среды. Обычно до 8–9 часов утра гибкость несколько снижена, однако тренировка в утренние часы для ее развития весьма эффективна. В холодную погоду и при охлаждении тела гибкость снижается, а при повышении темпе-ратуры внешней среды и под влиянием разминки, повышающей и температуру тела, – увеличивается.

Таким образом, все рассмотренные факторы нужно учитывать при построении учебно-тренировочного процесса, самостоятельных занятиях и уменьшить влияние некоторых из них по мере возможности.

Гибкость является важным физическим качеством человека. Недостаточная гибкость приводит к нарушениям в осанке, остеохондрозу, отложению солей, повышается риск получения травмы.

Гибкость необходима во многих видах спорта, в том числе гибкость важна в плавании. Кроме способности спортсмена выполнять движения с большой амплитудой, от гибкости зависит проявление таких качеств как сила, скорость, координация, выносливость. Гибкость позволяет более рационально и экономично использовать энергию. Спортсмен, обладающий отличной гибкостью меньше устает и меньше подвержен травмам мышц и связок.

Гибкость и основы методики ее воспитания

Гибкость — это способность выполнять движения с большой амплитудой. Термин «гибкость» более приемлем, если имеют в виду суммарную подвижность в суставах всего тела. А применительно к отдельным суставам правильнее говорить «подвижность», а не «гибкость», например «подвижность в плечевых, тазобедренных или голеностопных суставах». Хорошая гибкость обеспечивает свободу, быстроту и экономичность движений, увеличивает путь эффективного приложения усилий при выполнении физических упражнений. Недостаточно развитая гибкость затрудняет координацию движений человека, так как ограничивает перемещения отдельных звеньев тела. Методики развития гибкости.

По форме проявления различают гибкость активную и пассивную.При активной гибкости движение с большой амплитудой выполняют за счет собственной активности соответствующих мышц. Под пассивной гибкостью понимают способность выполнять те же движения под воздействием внешних растягивающих сил: усилий партнера, внешнего отягощения, специальных приспособлений и т.п. По способу проявления гибкость подразделяют на динамическую и статическую. Динамическая гибкость проявляется в движениях, а статическая — в позах.
Выделяют также общую и специальную гибкость. Общая гибкость характеризуется высокой подвижностью (амплитудой движений) во всех суставах (плечевом, локтевом, голеностопном, позвоночника и др.); специальная гибкость — амплитудой движений, соответствующей технике конкретного двигательного действия.

Проявление гибкости зависит от ряда факторов.

Главный фактор, обусловливающий подвижность суставов — анатомический. Ограничителями движений являются кости. Форма костей во многом определяет направление и размах движений в суставе (сгибание, разгибание, отведение, приведение, супинация, пронация, вращение).
Гибкость обусловлена центрально-нервной регуляцией тонуса мышц, а также напряжением мыщц-антагонистов. Это значит, что проявления гибкости зависят от способности произвольно расслаблять растягиваемые мышцы и напрягать мышцы, которые осуществляют движение, т.е. от степени совершенствования межмышечной координации.
На гибкость существенно влияют внешние условия:
1) время суток (утром гибкость меньше, чем днем и вечером);
2) температура воздуха (при 20. 30 °С гибкость выше, чем при 5. 10 °С);
3) проведена ли разминка (после разминки продолжительностью 20 мин гибкость выше, чем до разминки);
4) разогрето ли тело (подвижность в суставах увеличивается после 10 мин нахождения в теплой ванне при температуре воды +40 °С или после 10 мин пребывания в сауне).
Фактором, влияющим на подвижность суставов, является также общее функциональное состояние организма в данный момент: под влиянием утомления активная гибкость уменьшается (за счет снижения способности мышц к полному расслаблению после предшествующего сокращения), а пассивная увеличивается (за счет меньшего тонуса мышц, противодействую trnbsp;щих растяжению).
Положительные эмоции и мотивация улучшают гибкость, а противоположные личностно-психические факторы ухудшают.
Результаты немногих генетических исследований говорят о высоком или среднем влиянии генотипа на подвижность тазобедренных и плечевых суставов и гибкость позвоночного столба.

Наиболее интенсивно гибкость развивается до 15—17 лет. При этом для развития пассивной гибкости сенситивным периодом будет являться возраст 9—10 лет, а для активной — 10—14 лет.
Целенаправленно развитие гибкости должно начинаться с 6— 7 лет. У детей и подростков 9—14 лет это качество развивается почти в 2 раза эффективнее, чем в старшем школьном возрасте.
Задачи развития гибкости. В физическом воспитании главной является задача обеспечения такой степени всестороннего развития гибкости, которая позволяла бы успешно овладевать основными жизненно важными двигательными действиями (умениями и навыками) и с высокой результативностью проявлять остальные двигательные способности — координационные, скоростные, силовые, выносливость.
В плане лечебной физической культуры в случае травм, наследственных или возникающих заболеваний выделяется задача по восстановлению нормальной амплитуды движений суставов.
Для детей, подростков, юношей и девушек, занимающихся спортом, выдвигается задача совершенствования специальной гибкости, т.е. подвижности в тех суставах, которым предъявляются повышенные требования в избранном виде спорта.

Средства и методы воспитания гибкости

В качестве средств развития гибкости используют упражнения, которые можно выполнять с максимальной амплитудой. Их иначе называют упражнениями на растягивание.
Основными ограничениями размаха движений являются мышцы-антагонисты. Растянуть соединительную ткань этих мышц, сделать мышцы податливыми и упругими (подобно резиновому жгуту) — задача упражнений на растягивание.
Среди упражнений на растягивание различают активные, пассивные и статические.
Активные движения с полной амплитудой (махи руками и ногами, рывки, наклоны и вращательные движения туловищем) можно выполнять без предметов и с предметами (гимнастические палки, обручи, мячи и т.д.).
Пассивные упражнения на гибкость включают: движения, выполняемые с помощью партнера; движения, выполняемые с отягощениями; движения, выполняемые с помощью резинового эспандера или амортизатора; пассивные движения с использованием собственной силы (притягивание туловища к ногам, сгибание кисти другой рукой и т.п.); движения, выполняемые на снарядах (в качестве отягощения используют вес собственного тела).
Статические упражнения, выполняемые с помощью партнера, собственного веса тела или силы, требуют сохранения неподвижного положения с предельной амплитудой в течение определенного времени (6—9 с). После этого следует расслабление, а затем повторение упражнения.
Упражнения для развития подвижности в суставах рекомендуется проводить путем активного выполнения движений с постепенно увеличивающейся амплитудой, использования пружинящих «самозахватов», покачиваний, маховых движений с большой амплитудой.
Основные правила применения упражнений в растягивании: не допускаются болевые ощущения, движения выполняются в медленном темпе, постепенно увеличиваются их амплитуда и степень применения силы помощника.
Основным методом развития гибкости является повторный метод, где упражнения на растягивание выполняются сериями. В зависимости от возраста, пола и физической подготовленности занимающихся количество повторений упражнения в серии дифференцируется. В качестве развития и совершенствования гибкости используются также игровой и соревновательный методы (кто сумеет наклониться ниже; кто, не сгибая коленей, сумеет поднять обеими руками с пола плоский предмет и т.д.).

Факторы, определяющие объем движений в суставах

1. Главный фактор — разность площадей сочленяющихся суставных поверхностей. Из всех суставов наибольшая разность площадей суставных поверхностей в плечевом суставе (площадь головки плечевой кости в 6 раз больше площади суставной впадины на лопатке), поэтому в плечевом суставе самый большой объем движений. В крестцово-подвздошном сочленении суставные поверхности по площади равны, поэтому движения в нем практически отсутствуют.

2. Наличие вспомогательных элементов. Например, мениски и диски, увеличивая конгруэнтность суставных поверхностей, увеличивают объем движений. Суставные губы, увеличивая площадь суставной поверхности, способствуют ограничению движений. Внутрисуставные связки ограничивают движения только в определенном направлении (крестообразные связки коленного сустава не препятствуют сгибанию, но противодействуют чрезмерному разгибанию).

3. Комбинация суставов. У комбинированных суставов движения определяются по суставу, имеющему меньшее число осей вращения. Хотя многие суставы, исходя из формы суставных поверхностей, способны выполнять больший объем движений, он у них ограничен из-за комбинации. Например, по форме суставных поверхностей латеральные атлантоосевые суставы — плоские, но в результате комбинации со срединным атлантоосевым суставом они работают как вращательные. Это же относится и к суставам ребер, кисти, стопы и др.

4. Состояние капсулы сустава. При тонкой, эластичной капсуле движения совершаются в большем объеме. Даже неравномерная толщина капсулы в одном и том же суставе сказывается на его работе. Например, в височно-нижнечелюстном суставе капсула тоньше спереди, чем сзади и сбоку, поэтому наибольшая подвижность в нем именно кпереди.

5. Укрепление капсулы сустава связками. Связки оказывают тормозящее и направляющее действие, так как коллагеновые волокна обладают не только большой прочностью, но и малой растяжимостью. В тазобедренном суставе подвздошно-бедренная связка препятствует разгибанию и повороту конечности кнутри, лобково-бедренная связка — отведению и вращению наружу. Самые мощные связки находятся в крестцово-подвздошном суставе, поэтому движений в нем практически нет.

6. Мышцы, окружающие сустав. Обладая постоянным тонусом, они скрепляют, сближают и фиксируют сочленяющиеся кости. Сила мышечной тяги составляет до 10 кг на 1 см2 поперечника мышцы. Если удалить мышцы, оставить связки и капсулу, то объем движений резко возрастает. Кроме непосредственного тормозящего действия на движения в суставах, мышцы оказывают и косвенное — через связки, от которых они начинаются. Мышцы при своем сокращении делают связки неподатливыми, упругими.

7. Синовиальная жидкость. Она оказывает сцепляющее воздействие и смазывает суставные поверхности. При артрозо-артритах, когда нарушается выделение синовиальной жидкости, в суставах появляются боль, хруст, объем движений уменьшается.

8. Винтовое отклонение. Имеется оно только в плечелоктевом суставе и оказывает тормозящее воздействие при движениях.

9. Атмосферное давление. Оно способствует соприкосновению суставных поверхностей с силой 1 кг на 1 см2, оказывает равномерное стягивающее воздействие, следовательно, умеренно ограничивает движения.

10. Состояние кожи и подкожной жировой клетчатки. У тучных людей объем движений всегда меньше из-за обильной подкожной жировой клетчатки. У стройных, подтянутых, у спортсменов движения совершаются в большем объеме. При заболеваниях кожи, когда теряется эластичность, движения резко уменьшаются, а нередко после тяжелых ожогов, ранений образуются контрактуры, также значительно препятствующие движениям.

Для определения объема движений в суставах существует несколько методик. Травматологи определяют его с помощью угломера. Для каждого сустава определены свои исходные положения. Исходным положением для плечевого сустава является положение руки, свободно свисающей вдоль туловища. Для локтевого сустава — полное разгибание (180°). Пронацию и супинацию определяют при согнутом под прямым углом локтевом суставе и при установке кисти в сагиттальной плоскости.

В анатомических исследованиях величину угла подвижности можно рассчитать по разности дуг вращения на каждой из сочленяющихся суставных поверхностей. Величина угла подвижности зависит от ряда факторов: пола, возраста, степени тренировки, индивидуальных особенностей.

Болезни суставов
В.И. Мазуров

Дата добавления: 2014-11-20 ; Просмотров: 2591 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Факторы влияющие на подвижность сустава

К основным элементам сустава относят: суставные поверхности соединяющихся костей, суставную капсулу, полость сустава и синовиальную жидкость. Соединяющиеся в суставе поверхности костей покрыты слоем гиалинового (реже волокнистого) хряща, гладкая поверхность которого, обращенная в полость сустава, облегчает движение одной кости, относительно другой. Эластичность хряща в суставах способствует смягчению ударов и сотрясений, которые могут испытывать сочленяющиеся кости при ходьбе, прыжке и других движениях. Кроме того, благодаря эластическим свойствам хряща, его способности деформироваться
увеличиваются подвижность в суставах и смазка суставных поверхностей под давлением. Определенную роль в этом играют также микроскопические особенности строения суставного хряща. На его поверхности, обращенной в полость сустава, имеются неровности: изгибы 1-го порядка длиной около 1000 мкм, 2-го порядка
— около 50 мкм. Под действием механической нагрузки неровности исчезают и поверхность суставного хряща сглаживается (изгибы 1-го порядка сглаживаются при удельном давлении 3,5 кг/см 2 ,2- го порядка — при 20 кг/см 2 ). При этом вначале сплющиваются лишь краевые выпячивания волнистой поверхности и в глубине хряща давление относительно понижается. Туда и перемещается часть синовии. Между соприкасающимися поверхностями суставных концов костей, покрытых хрящом, остается часть жидкости, обладающая большой вязкостью и содержащая гиалуроновую кислоту, благодаря чему сустав продолжает функционировать и при большом сдавливании сочленяющихся поверхностей, хотя трение повышается. С уменьшением давления на хрящ жидкость из глубинных его частей вновь поступает в полость сустава и коэффициент трения суставных
поверхностей снижается. Поверхности хрящей обычно конгруэнтны, т.е. по своей форме соответствуют друг другу: если на одной кости имеется выпуклость, то на другой, сочленяющейся с ней, — вогнутость. Головки трубчатых костей покрыты более толстым гиалиновым хрящом в средней, самой выпуклой, части и более тонким — по периферии. У соответствующих головкам суставных впадин, наоборот, хрящ более тонкий в середине и более толстый по краям.

Суставная капсула , или сумка, имеет два слоя: наружный — фиброзный и внутренний — синовиальный, от названия которого суставы и получили наименование синовиальных соединений костей. Фиброзный слой суставной капсулы представляет собой переход надкостницы одной из сочленяющихся костей в надкостницу другой. Пучки фиброзного слоя идут в различных направлениях; более поверхностно лежащие — продольно, более глубокие — поперечно. Синовиальный слой построен из рыхлой соединительной ткани. Он доходит до суставных хрящей. Его внутренняя поверхность, обращенная в сторону сустава, гладкая и блестящая. Она покрыта слоем эндотелиальных клеток. Толщина суставной капсулы не везде одинакова. Обычно в тех местах, где капсула не покрыта мышцами, она толще, в других — тоньше. Полость сустава представляет собой щелевидное пространство, ограниченное суставными поверхностями сочленяющихся костей и капсулой сустава. Она заполнена синовиальной жидкостью, которая вырабатывается эндотелиальным (синовиальным) слоем суставной капсулы.

Добавочными образованиями суставов являются синовиальные складки и ворсинки, внутрисуставные диски, мениски и губы, а также связки. Синовиальные складки — это выросты синовиального слоя капсулы, заполненные жировой тканью. Они занимают свободные пространства в суставе при несоответствии суставных поверхностей сочленяющихся костей и выполняют роль амортизаторов. Ворсинки в большом количестве находятся на внутренней поверхности синовиального слоя. Они являются источником образования и резорбции синовиальной жидкости.

Внутрисуставные диски — это хрящевые образования в виде пластинок, расположенные внутри полости сустава и разделяющие ее на две части (камеры). Диски обеспечивают большую подвижность в суставе. Мениски в отличие от дисков — не сплошные образования, они имеют в середине отверстие. Наружный край мениска утолщен и срастается с суставной капсулой, а внутренний, острый, свободен. Мениски улучшают конгруэнтность костей, амортизируют толчки и сотрясения, способствуют разнообразию движений. Суставные губы построены из волокнистого хряща. Они прикрепляются по краю суставных впадин. Суставные губы увеличивают площадь соприкосновения сочленяющихся поверхностей костей и способствуют более равномерному давлению одной кости на другую.

В укреплении суставов играют роль следующие факторы.
1. Натяжение вспомогательных связок. Связочный аппарат разных суставов построен не одинаково. В одних случаях связки представляют собой утолщенные места суставной сумки (например, подвздошно-бедренная связка), в других—они находятся на некотором, иногда довольно значительном, расстоянии от суставной сумки (например, крестцово-остистая и крестцово-бугорная связки), в третьих—расположены внутри сустава (например, крестообразные связки коленного сустава). Укрепляя суставы, связки одновременно играют роль тормоза, ограничивающего подвижность соединяющихся костей. С помощью систематических упражнений можно увеличить эластичность связочного аппарата и степень подвижности в суставе.
2. Тяга мышц, проходящих около того или иного сустава. Особенно это относится к тем суставам, подвижность в которых очень большая (плечевой сустав). У них сумка широкая и не может играть существенной роли в укреплении сустава.
3. Атмосферное давление. Оно также играет существенную роль в удержании одной суставной поверхности в соприкосновении с другой. Например, если на подвешенном трупе перерезать находящиеся около тазобедренного сустава мягкие ткани, не повреждая его сумки, то окажется достаточным одного атмосферного давления, чтобы удержать суставные поверхности в соприкосновении, хотя расхождению их будет способствовать сила тяжести самой нижней конечности; при повреждении же и суставной сумки воздух попадает в полость сустава, вследствие чего немедленно произойдет расхождение суставных поверхностей.
4. Прилипание одной суставной поверхности к другой. В тех суставах, где сочленяющиеся поверхности костей при плотном прилегании полностью соответствуют друг другу, имея одинаковые радиусы кривизны (конгруэнтные суставы, например тазобедренный), одну поверхность в соприкосновении с другой удерживает сила молекулярного притяжения. Склеивающее действие оказывает и синовиальная жидкость.

Форма суставов. Степень подвижности в том или ином суставе зависит от особенностей его строения, и прежде всего от формы суставных поверхностей костей. Суставы принято классифицировать по их форме.

Шаровидные суставы являются наиболее подвижными. Они имеют бесконечное количество осей вращения, проходящих через центр головки кости, среди которых обычно выделяют три взаимно перпендикулярные:
1) поперечную, или фронтальную, 2) переднезаднюю, или сагиттальную, и 3) вертикальную, или продольную. Вокруг поперечной оси в области конечностей возможно сгибание и разгибание, в области туловища и головы — наклоны вперед и назад; вокруг переднезадней оси в области конечностей — отведение и приведение, в области туловища головы — наклоны в сторону; вокруг вертикальной оси в области конечностей — поворот внутрь и поворот наружу (пронация и супинация), в области туловища и головы — повороты в стороны, которые объединяются под общим названием ротация (вращение). Кроме того, в шаровидных суставах возможно так и называемое круговое движение (циркумдукция). Примером шаровидного сустава может служить плечевой сустав. Не во всех шаровидных суставах можно производить движения вокруг всех трех осей. Например, в пястно-фаланговом суставе возможны движения только вокруг поперечной и переднезадней осей, активное же движение вокруг вертикальной оси невозможно ввиду отсутствия необходимых для его выполнения мышц, а также из-за сопротивления связок, укрепляющих суставы.

К суставам со множеством осей вращения принадлежит чашеобразный, или ореховидный сустав , в котором головка кости погружена глубоко в суставную впадину. Движения в нем совершаются как и в шаровидном суставе, однако размах их значительно меньше. Примером чашеобразного сустава является тазобедренный сустав.

Эллипсовидные суставы имеют две оси вращения — поперечную и переднезаднюю. В них возможны сгибание и разгибание, приведение и отведение, а также круговое движение. Повороты внутрь или наружу невозможны. В некоторых суставах, например в лучезапястном, можно пассивно произвести небольшую ротацию, используя эластические свойства суставного хряща.

Седловидные суставы также принадлежат к двухосным. Суставная поверхность сочленяющихся в них костей несколько напоминает форму седла. В этих суставах возможно помимо приведения, отведения, сгибания и разгибания также круговое движение. Примером седловидного сустава является запястно-пястный сустав большого пальца кисти. Говоря об этом суставе, вместо терминов «сгибание» и «разгибание» употребляют «противопоставление и «отставление» (оппозиция и репозиция).

К двухосным суставам относят еще мыщелковый сустав, имеющий промежуточную форму эллипсовидного и блоковидного суставов. Примером может служить коленный сустав.

Блоковидные и цилиндрические суставы относятся к одноосным суставам. Блоковидные суставы в чистом виде находятся, например, между фалангами пальцев. В блоковидных суставах одна фронтальная ось вращения, вокруг которой возможны сгибание и разгибание. Цилиндрические суставы напоминают по форме суставной поверхности отрезок цилиндра. В этих суставах возможны повороты вокруг вертикальной оси внутрь и наружу (лучелоктевои сустав) или направо и налево (атлантоосевой сустав).

Плоские суставы характеризуются тем, что их суставные поверхности представляют собой отрезки шара с большим радиусом и незначительной кривизной.) Движения в этих суставах могут заключаться лишь в небольшом скольжении одной суставной поверхности относительно другой. Они происходят отчасти и за счет деформации суставных хрящей. Примером плоских суставов являются соединения многих костей запястья или костей предплюсны друг с другом.

Есть суставы, в которых движения тесно связаны между собой. Например, движение в одном височно-нижнечелюстном суставе невозможно без одновременного движения и в другом суставе. Такие два сустава объединяются под общим названием комбинированный сустав .

Суставы, внутри которых имеются суставные диски, по сути дела, состоят из двух суставов и носят название двухкамерных (например, грудино-ключичный и височно-нижнечелюстной суставы). Суставы, в образовании которых принимают участие только две кости, называются простыми; суставы, в образовании которых участвуют три или большее количество костей, принято называть сложными. Примером первых может служить межфаланговый сустав, примером вторых—локтевой, лучезапястный.

Степень подвижности в суставах зависит от соответствия сочленяющихся поверхностей (по величине их площадей). Чем это соответствие больше, тем подвижность в суставе меньше, и наоборот. Например, суставная поверхность головки плечевой кости значительно больше, чем поверхность суставной впадины лопатки. В связи с этим плечевой сустав является одним из наиболее подвижных. В суставах плоской формы (например, в суставах между клиновидными костями предплюсны) сочленяющиеся поверхности полностью
соответствуют друг другу, поэтому подвижность в них ничтожна. Величину угла максимального сгибания и разгибания, приведения и отведения в данном суставе можно ориентировочно определить, вычитая из угла суставной поверхности большей кривизны угол суставной поверхности меньшей кривизны. Так, для определения подвижности в плечелоктевом суставе следует вычесть из величины угла блока плечевой кости величину угла полулунной вырезки локтевой кости. В данном случае это составит: 320°—180° = 140°,— угол подвижности, которым приблизительно располагает локтевая кость в отношении плечевой кости. Таким образом, степень подвижности в соединениях костей зависит от особенностей строения этих соединений. Она неодинакова у людей различного возраста, пола, индивидуальных особенностей и степени тренированности. У женщин подвижность в среднем больше, чем у мужчин; улиц молодого возраста больше, чем у лиц старшего возраста; у тренированных (особенно в упражнениях «на гибкость») больше, чем у нетренированных. На величину подвижности оказывает влияние степень растяжимости тех мышц, которые находятся на стороне, противоположной движению, а также сила мышц, производящих данное движение. Чем эластичнее первые и сильнее вторые, тем амплитуда движения в данном суставе больше, и наоборот. На величину подвижности влияет также окружающая температура. В холодном помещении движения имеют обычно меньший размах, чем в теплом. Даже время дня оказывает влияние на величину подвижности звеньев тела: утром она меньше, чем вечером.

Читайте также:  Сенситивный период гибкости
Ссылка на основную публикацию